Climate Change, Sea-Level Rise, and Coastal Erosion in California

Patrick Barnard, Amy East, Li Erikson, Juliette Finzi Hart, Amy Foxgrover, Shawn Harrison, Christie Hegermiller, Dan Hoover, Liv Herdman, Patrick Limber, Jessica Lovering, Rosanne Martyr, Andy O’Neill, Andy Ritchie, Sky Smith, Alex Snyder, Andrew Stevens, Sean Vitousek, and Jon Warrick

Pacific Coastal and Marine Science Center

U.S. Department of the Interior
U.S. Geological Survey

Collaborators and funders:
Objectives

• Improve understanding of factors controlling shoreline evolution
 – Waves, tides, currents, sediment supply
 – Extreme/intermittent events (waves, floods, cliff failure)
 – Human factors (armoring/nourishment, climate change)

• Develop models to predict future change

• Test and refine models using measured coastal response from a variety of settings, and under various forcing scenarios (changes in sea level, wave energy/direction, and rain/runoff)

• Communicate model predictions to coastal planners/decision makers
Projections for San Francisco Area and State overall

SLR for San Francisco (NRC 2012)
- 28 cm SLR by 2050 (range 12-61 cm)
- 92 cm SLR by 2100 (range 42-166 cm)

SLR for CA (OST 2017)
- 18 cm to 34 cm (67% probability) of SLR by 2050
- 30 cm to 104 cm (305 cm upper limit!) SLR by 2100

Storms for California
- No significant changes in wave height
- Extreme events from ~10-15 degrees further south

El Niño for 21st Century
- More frequent extreme events
- Doubling of winter erosion
- Wave energy increase by 30%

Net effect
- Today’s 100-year coastal water level event is projected to occur every 1-5 years by 2050 for much of California
- Greatest impacts on low-lying coastal areas (e.g., Stinson Beach, San Francisco Bay)
USGS Shoreline Research and Monitoring

- Beach, bluff, and nearshore bathymetry surveys: Seasonal, interannual and longer (e.g., El Niño) timescale changes in shoreline position and coastal morphology
 - Ocean Beach (OB)
 - Northern Monterey Bay (NMB)
 - Central CA coastline
 - Santa Barbara Littoral Cell (SBLC)
- Statewide CA beach and cliff erosion rate update (using 2014-16 Lidar)
- CoSMoS modeling
 - Predictions of coastal hazards due to storms and sea level rise (SLR)
 - Web tools to visualize and quantify impacts, outreach coordinator (J. Finzi Hart) to facilitate use by communities and planners
- CoSMoS-COAST modeling
 - Predictions of shoreline evolution (mostly retreat) due to storms and SLR
- Cliff erosion/retreat modeling
 - Predictions of cliff retreat due to storms and SLR
Monitoring Sites

1. **Ocean Beach**: April 2004 – present
 - 188 beach topography surveys (~monthly)
 - 42 bathymetric surveys (2-4/yr)
 - 42 SfM surveys (~monthly since 12/2014)

2. **Northern Monterey Bay**: Oct 2014 – present
 - 8 beach topo surveys (Spring & Fall, 2+/yr)
 - 8 bathy surveys (S&F, 2+/yr, ~200 lines each)
 - 4/8 additional topo surveys at Santa Cruz/Capitola beaches (erosion and flood events)

3. **Central CA Coast**: Dec 2015 - present
 - 18+ SfM flights (intervals weeks - months)

4. **Santa Barbara Littoral Cell**: Oct 2005 – present
 - 6 focus sites: Goleta, Carpinteria, Rincon, N and S Ventura, Mugu Canyon.
 - Montecito added Spring 2018
 - 99 beach topo surveys (Spring and Fall)
 - 89 bathy surveys (mostly Fall, some Spring)
 - 5 SfM flights (Fall 2016 - Spring 2018)

Regular monitoring only covers ~5% of California coast (~60 of 1,340 km)* - coastal dynamics not well constrained!

*including Scripps So Cal monitoring
Monitoring Methods

• GPS surveys
 – Beaches (SUV, ATV, walking)
 – Nearshore bathymetry (PWCs with single-beam echosounders)

• Structure from Motion (SfM) digital surface models from photographs
 – Handheld (bluffs)
 – Small plane (beaches/bluffs)
 – Drone (beaches/bluffs)
Regional CA Coastal Dynamics

2015/16
- Extreme EN erosion – good summer recovery at OB, NMB, less in SBLC
- Below average rainfall

2016/17
- ~Average erosion – good summer recovery at OB, NMB, less in SBLC
- Lots of AR rain in N/C CA, less in So CA
 - OB: increased bluff failures
 - NMB: San Lorenzo River and Soquel Creek flooding (major)
 - SBLC: Ventura and Santa Clara river flooding (minor)

2017/18
- Below average erosion (net accretion in SB!)
- Record fires and AR rain - Montecito mudflows, regional sediment inputs

**Southern CA shoreline position data from Scripps monitoring programs

PROVISIONAL DATA SUBJECT TO REVISION
CoSMoS Modeling and Products

Products complete for:
- North-Central coast (2013)
- San Francisco Bay (2014)
- Pt Arena (2016)
- Southern California (2016-17)

In work for:
- Central Coast (2018)
- North Coast (2019)

Hazard Exposure Reporting and Analytics (HERA)
- 600,000+ residents
- $150 billion in property
- 4,700 km of roads
- 350 critical facilities
CoSMoS-COAST: Coastal One-line Assimilated Simulation Tool

• A (hybrid) numerical model predicting long-term shoreline evolution
 - Coastline represented by shore-perpendicular transects
 - Built from existing models (with improvements)

• Management scenarios
 - 1. hold the line at urban interface, no nourishment
 - 2. hold the line, continue existing nourishment
 - 3. let urban interface erode, no nourishment
 - 4. let interface erode, continue nourishment

• Modeled processes include
 - Longshore sediment transport
 - Cross-shore sediment transport
 - Effects of sea-level rise
 - Sediment supply by natural & anthropogenic sources

• So CA 2100, SLR 0.93 – 2.0m
 - Average ~50m erosion
 - 31-67% of beaches completely eroded

Vitousek et al., 2017. JGR-ES
Cliff Retreat Modeling

- Ensemble approach - up to 7 cliff models per transect
 - Beach protects cliff from waves
 - Includes water level variations (tides, run-up, set-up, surge, etc.)

- Synthesized from existing models (with improvements)

- Artificial Neural Networks to estimate model coefficients and extrapolate model behavior over study area

Limber et al., in prep
Future Coastal Change

- Today’s 100-year coastal water level event projected to occur every 1-5 years by 2050
- Up to 2/3 of beaches completely eroded by 2100 (SLR and urbanized coast effects)
- Cliffs will erode up to 3 times faster than present
- More frequent/intense El Niño erosion?
- More extreme droughts/wildfires/intense rainfall – less frequent but more intense sediment inputs?