Home   For the Media   Contact Us
Click here to learn more about ASBPA memberships.
Support ASBPA- Become a member!
ASBPAASBPAASBPAASBPA
  • About Us
    • Mission
    • Chapters
      • California Shore & Beach Preservation Association
      • Central Gulf Coast Chapter, ASBPA
      • Great Lakes Shore & Beach Preservation Association
      • Hawaii Shore and Beach Preservation Association
      • Mid-Atlantic Chapter, ASBPA
      • Northeast Shore and Beach Preservation Association
      • Students & New Professionals
      • Texas Chapter of ASBPA
    • Leadership
    • Awards Programs
    • Partners
    • Committees
    • Support Us
  • Conferences
    • Upcoming Conference
    • Future Meetings
    • Past Meetings
  • Resources
    • Shore & Beach Journal
    • Coastal Voice E-Newsletter
    • American Beach News Service
    • White Papers/Fact Sheets
    • Coastal Universities Guide
    • National Beach Nourishment Database
    • ASBPA/CSO/USACE Sediment Placement Regulations Project
    • Southeast Coastal Communities Water Level Observation System
  • Members
    • Join or Renew
    • Our Members
  • Get Involved
    • Science and Technology
    • Policy
    • Funding
    • Committees
    • Support Us
    • Blue Flag USA

Unpacking storm damages on a developed shoreline: Relating dune erosion and urban runoff

Barrineau, P. and Kana T., 2019 “Unpacking storm damages on a developed shoreline: Relating dune erosion and urban runoff”, Shore & Beach, 87(3), 35-45.  https://doi.org/10.34237/1008733

Access Shore & Beach Vol. 87, No. 3

ASBPA members have access to a full digital edition of Shore & Beach. Become a member now to get immediate access.

Unpacking storm damages on a developed shoreline: Relating dune erosion and urban runoff

Patrick Barrineau and Tim Kana

Coastal Science & Engineering Inc., P.O. Box 8056 Columbia SC 29205

Abstract

Hurricane Matthew (2016) caused significant beach and dune erosion from Cape Hatteras, North Carolina, USA, to Cape Canaveral, Florida, USA. At Myrtle Beach, South Carolina, the storm caused beach recession, and much of the southern half of the city’s beaches appeared to be overwashed in post-storm surveys. Around half of the city’s beaches appeared overwashed following the storm; however, the Storm Impact Scale (SIS; Sallenger 2000) applied to a pre-storm elevation model suggests less than 10% of the city’s beaches should have experienced overwash. Spatial analysis of elevation and land cover data reveals dunes that were “overwashed” during Matthew drain from watersheds that are >35% impervious, where those showing only dune recession are <5% impervious. The densely developed downtown of Myrtle Beach sits on a low seaward-sloping terrace. Additionally, indurated strata beneath the downtown area can prevent groundwater from draining during excessive rain events. As a result, the most continuous impervious surface cover and near-surface strata lie within a half-kilometer of the beach and drain directly to the backshore. Along the U.S. Southeast coast, this is somewhat rare; many coastal systems feature a lagoon or low-lying bottomland along their landward border, which facilitates drainage of upland impervious surfaces following storm passage. At Myrtle Beach, all of the stormwater runoff is drained directly to the beach through a series of outfall pipes. Many of the outfall pipes are located along the backshore, near the elevation of storm surge during Matthew. Runoff from Matthew’s heavy rains was observed causing ponding on the landward side of the foredune and scouring around beach access walkways. Based on these observations, the severe dune erosion experienced near downtown Myrtle Beach during Hurricane Matthew may have been caused by runoff and/or groundwater flux rather than overwash. These results highlight an unexpected relationship between upland conditions and dune erosion on a developed shoreline. That is, dune erosion can be caused by mechanisms beside overwash during storm events.

BECOME A MEMBER!

Please consider joining the ASBPA.

CLICK TO LEARN MORE

 

QUICK LINKS

News

Next Conference

Members

About Us

Back to Top

CONTACT US

General Inquiries

For the Media

Facebook
Twitter
Instagram
Copyright ASBPA 2022 | Privacy Policy | Terms & Conditions View our latest 990