Home   For the Media   Contact Us
Click here to learn more about ASBPA memberships.
Support ASBPA- Become a member!
ASBPAASBPAASBPAASBPA
  • About Us
    • Mission
    • Chapters
      • California Shore & Beach Preservation Association
      • Central Gulf Coast Chapter, ASBPA
      • Great Lakes Shore & Beach Preservation Association
      • Hawaii Shore and Beach Preservation Association
      • Mid-Atlantic Chapter, ASBPA
      • Northeast Shore and Beach Preservation Association
      • Students & New Professionals
      • Texas Chapter of ASBPA
    • Leadership
    • Awards Programs
    • Partners
    • Committees
    • Support Us
  • Conferences
    • Upcoming Conference
    • Future Meetings
    • Past Meetings
  • Resources
    • Shore & Beach Journal
    • Coastal Voice E-Newsletter
    • American Beach News Service
    • White Papers/Fact Sheets
    • Coastal Universities Guide
    • National Beach Nourishment Database
    • ASBPA/CSO/USACE Sediment Placement Regulations Project
    • Southeast Coastal Communities Water Level Observation System
  • Members
    • Join or Renew
    • Our Members
  • Get Involved
    • Science and Technology
    • Policy
    • Funding
    • Committees
    • Support Us
    • Blue Flag USA

Evaluating direct and strategic placement of dredged material for marsh restoration through model simulations

Cover of Shore & Beach showing marsh restorationSamuel M. Zapp, M.S., and Giulio Mariotti, Ph.D., 2021. “Evaluating direct and strategic placement of dredged material for marsh restoration through model simulations”, Shore & Beach, 89(4), 33-40.

Access Shore & Beach Vol. 89, No. 4

ASBPA members have access to a full digital edition of Shore & Beach. Become a member now to get immediate access.

http://doi.org/10.34237/1008944

Evaluating direct and strategic placement of dredged material for marsh restoration through model simulations
Samuel M. Zapp, M.S., and Giulio Mariotti, Ph.D.
1002-Q Energy Coast & Environment Building, Louisiana State University, Baton Rouge, LA 70803

Dredged material can be used for marsh restoration by depositing it on the marsh surface (thin-layer placement), by releasing it at the mouth of channels and allowing tidal currents to transport it onto the marsh platform (channel seeding), or by creating new marshes over shallow areas of open water. We investigate the efficacy of these different methods using a comprehensive 2D marsh evolution model that simulates tidal dynamics, vegetation processes, bank and wave erosion, and ponding. Total marsh area is assessed over 50 years in an idealized microtidal marsh under different relative sea level rise (RSLR) scenarios. For a given volume of total sediment added, the frequency of deposition is relatively unimportant in maximizing total marsh area, but the spatial allocation of the dredged material is crucial. For a given volume of sediment, thin-layer deposition is most effective at preserving total marsh area, especially at high rates of RSLR. Channel seeding is less efficient, but it could still provide benefits if larger amounts of sediment are deposited every 1-2 years. Marsh creation is also beneficial, because it not only increases the marsh area, but additionally slows the erosion of the existing marsh. The 2D model is highly computationally efficient and thus suited to explore many scenarios when evaluating a restoration project. Coupling the model with a cost assessment of the different restoration techniques would provide a tool to optimize marsh restoration.

BECOME A MEMBER!

Please consider joining the ASBPA.

CLICK TO LEARN MORE

 

QUICK LINKS

News

Next Conference

Members

About Us

Back to Top

CONTACT US

General Inquiries

For the Media

Facebook
Twitter
Instagram
Copyright ASBPA 2022 | Privacy Policy | Terms & Conditions View our latest 990